vehicle's velocity time series prediction using neural network
نویسندگان
چکیده
this paper presents the prediction of vehicle's velocity time series using neural networks. for this purpose, driving data is firstly collected in real world traffic conditions in the city of tehran using advance vehicle location devices installed on private cars. a multi-layer perceptron network is then designed for driving time series forecasting. in addition, the results of this study are compared with the auto regressive (ar) method. the least root mean square error (rmse) and median absolute percentage error (mdape) are utilized as two criteria for evaluation of predictions accuracy. the results demonstrate the effectiveness of the proposed approach for prediction of driving data time series.
منابع مشابه
Vehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملAvailability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کاملTime series prediction via neural network inversion
In this work, we propose neural network inversion of a backward predictor as a technique for multi-step prediction of dynamic time series. It may be di cult to train a large network to capture the correlation that exists in some dynamic time series represented by small data sets. The new approach combines an estimate obtained from a forward predictor with an estimate obtained by inverting a bac...
متن کاملTime-series prediction using a local linear wavelet neural network
A local linear wavelet neural network (LLWNN) is presented in this paper. The difference of the network with conventional wavelet neural network (WNN) is that the connection weights between the hidden layer and output layer of conventional WNN are replaced by a local linear model. A hybrid training algorithm of particle swarm optimization (PSO) with diversity learning and gradient descent metho...
متن کاملConditional prediction of time series using spiral recurrent neural network
Frequently, sequences of state transitions are triggered by specific signals. Learning these triggered sequences with recurrent neural networks implies storing them as different attractors of the recurrent hidden layer dynamics. A challenging test and also useful for application is conditional prediction of sequences giving just the trigger signal as an input and letting the recurrent neural ne...
متن کاملTime Series Forecasting using Evolutionary Neural Network
Efficient time series forecasting (TSF) is of utmost importance in order to make better decision under uncertainty. Over the past few years a large literature has evolved to forecast time series using different artificial neural network (ANN) models because of its several distinguishing characteristics. This paper evaluates the effectiveness of three methods to forecast time series, one carried...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of automotive engineeringجلد ۱، شماره ۱، صفحات ۲۱-۲۸
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023